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The Bloomberg New Energy Finance (BNEF) reports of analysts expect newly installed PV capacity to be between 252 and 260 GW in
2025.

Commercial and industrial systems will also see their share increase, as these are becoming more and more profitable against the
background of rising electricity prices and electricity shortages in the country.
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Here are some common types of defects (intrinsic, extrinsic)
found in PV panels:

1.Micro-Cracks

2.PID (Potential Induced Degradation)
3.Snail Trails

4.Hot Spots

5.S0iling

6.Delamination and Discoloration
7.Corrosion

8.Cell Mismatch and Shading
8.Inverter and Junction Box Failures

Method Process
Visual Discoloration, surface soiling, browning,
Thermal Thermal extraordinary heating
Electrical [lluminated I-V curve measurement,

Transmittance line diagnosis

Fig. 3. Samples of solar panels with defective and normal surfaces.
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* Regular monitoring and maintenance of PV panels are essential to detect these defects early and address them
promptly.
* Traditionally, maintenance teams conduct visual inspections and use instruments like I-V curve tracers to detect

anomalies.
* limitations: Time-consuming, Subjective, Intermittent, Reactive.

* Solution: the advanced predictive capabilities offered by data analysis, machine learning and deep learning. to
predict when a failure is likely to occur and taking preventative measures before it happens.

* Advanced techniques like thermal imaging, electroluminescence, and the use of drones for inspection are
increasingly employed to identify and analyze these defects efficiently.
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computers possessing the same characteristics
of human intelligence, including reasoning,
interacting, and thinking like we do

Al ML NN DL

the word technologies that can
“ # o s . accomplish specific tasks
e or General Artificial Intelligence (Al) o o o ehess
the fact that recommending your next
DL Netflix TV show, and
algorithms Narrow Al enabled by identifying spam emails
’ . .
:r;nedfrun Mach II"I('-.'._‘ !'-e-a AL mg (M L) ., neural networks are a
on deep neu specific group of
ral " : algorithms used for
. networks. Neural Networks ( N N) machine learning that
These technologies enable: ;. model data using
* Anomaly Detection just neural I?u'rﬁ-'.mhs of %mﬁcia!
i eurons. Those
* Pattern Recognition neswor ks Sourons. 1o
* Predictive Insights (usually) mathematical model
three or that “mimics
more approximately how a
“hidden” neuron in the brain
layers works”

0O DO #OmaintecConf



S

OMAlNTEC Examples of Al models
o

Once data is collected, ML/DL algorithms come into play, offering advanced defect detection capabilities:
*Convolutional Neural Networks (CNNs)
*Recurrent Neural Networks (RNNs)

*Autoencoders
*YOLO .
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OMAINTEC Transfer learning models
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Figure 1. Different forms of defects in photovoltaic cells: (a) crack; (b) thick line; (c)
fragment; (d) black core; (e) horizontal dislocation.

These algorithms are trained on vast datasets,

Example of public dataset that consists of high-

resolution electroluminescence (EL) images derived

from both

monocrystalline and polycrystalline PV modules

e ELPV: a total of 2,624 grayscale images, each with
a resolution of 300x300 pixels and an 8-bit depth.

 PVEL-AD: contains 36,543 images with various
internal defects and heterogeneous background.
10 different categories such as crack (line and
star), finger interruption, black core,
misalignment, thick line, scratch, fragment, corner,
and material defect.
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OWC Predictive Maintenance with Al

To shift from reactive to proactive maintenance, The proposed

Maintenance Prediction Model capitalizes on the previously Algorithm 3: maintenance prediction model

localized defect regions from the defect detection process. 1: function MaintenancePredictionModel(defect features, maintenance data):
The localized defect features are then utilized as inputs for a 2: #Train the maintenance prediction model

specialized maintenance prediction model. model = train_maintenance model(defect features, maintenance data)
These attributes encapsulate critical information about the 3:  return model

type, size, and severity of defects. 4; function TrainMaintenanceModel(defect features, maintenance data):
Subsequently, the maintenance prediction model is trained to 5, #Prepare training data

harness the relationship between extracted defect features X train = defect features

and maintenance requirements. y_train = maintenance_data

6: #Initialize and train the maintenance prediction model (SYM)
model = initialize_model()

Scheduled

maintenance

11; maintenance model = MaintenancePredictionModel(defect features, maintenance data)

50%-70% OEE | #~-a{75%-90% OEE 7: model.train(X_train, y_train)
8 return model
-] # Main process
E ntmta defect features = extract defect features(localized defect regions)
= E=H 10; maintenance data=load maintenance data()
= PLANNED _ a |

activities

| Level 2
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OMAINTEC Field Successes: ML/DL in Action
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Oracle Maintenance _

Oracle Fusion Cloud Maintenance is a connected, smart maintenance management solution.
Powered by advanced technologies, it enables predictive maintenance and helps you increase
reliability and uptime while reducing overall costs.
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RapidValue

Remote Monitoring & Predictive Maintenance App for a Solar Energy

System
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Field Successes: ML/DL in Action
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DNV and GreenPowerMonitor, a
DNV company, have developed a
predictive maintenance system for
solar inverters that uses machine

learning models to represent an
inverter's normal operation and to
identify anomalous behaviour within
new streaming data.
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PLANT

ENEWSLETTERS  WEBINARS EHANDBOOKS GREAT QUESTION: A MANUFACTURING PODCAST

Patent VOI umes re Iated to i nte"igent pred ictive mai ntenance COMPRESSED AIR ELECTRICAL SYSTEMS ENERGY MANAGEMENT AUTOMATION CYBERSECURITY MOTORS AND DRIVES

Here we present highlights from companies benefitting from PdM, including example

Company Total patents (2010 - 2022) IF:; regr successes, why they matter, and the chosen tools and methods.
General Electric I e U.S. industrial products manufacturer
Schlumberger I e Tennessee snack food manufacturer
Halliburton .  Louisiana alumina refinery
Saudi Arabian Oil ———. » San Diego energy utility
Ecolab — « Singapore rail operator
e Australian iron ore mine
Linde ]
The Weir Group [
Baker Hughes [ ]
Air Products and Chemicals [
Emerson Electric [ ]

0O DO #OmaintecConf




M THE 215" INTERNATIONAL ; : p »

OMAINTEQC 0PERATIONS & MAINTENANCE N\ »
W CONFERENCE IN THE ARJAB COUNTRIES ‘ N

+ GTS0 N, .
28] ) i

A5 n
£ 5

. oy 3 :
[HANK SN OB
: I 0 U n | : 11, ‘
11} |
An Initiative by Organized by

O ODO #OmaintecConf Sy : @AINTEC EXICON.

ailinllg Jishiill gyl gyl INternational Group
Arab Operations & Malntenance Cou dulgall dgb._ljbi decgasn



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

